Extensions 1→N→G→Q→1 with N=C32 and Q=C3×Q16

Direct product G=N×Q with N=C32 and Q=C3×Q16
dρLabelID
Q16×C33432Q16xC3^3432,519

Semidirect products G=N:Q with N=C32 and Q=C3×Q16
extensionφ:Q→Aut NdρLabelID
C32⋊(C3×Q16) = C3×C32⋊Q16φ: C3×Q16/C6D4 ⊆ Aut C32484C3^2:(C3xQ16)432,578
C322(C3×Q16) = He34Q16φ: C3×Q16/C8C6 ⊆ Aut C321446-C3^2:2(C3xQ16)432,114
C323(C3×Q16) = He36Q16φ: C3×Q16/Q8C6 ⊆ Aut C3214412-C3^2:3(C3xQ16)432,160
C324(C3×Q16) = C3×C322Q16φ: C3×Q16/C12C22 ⊆ Aut C32484C3^2:4(C3xQ16)432,423
C325(C3×Q16) = C3×C323Q16φ: C3×Q16/C12C22 ⊆ Aut C32484C3^2:5(C3xQ16)432,424
C326(C3×Q16) = Q16×He3φ: C3×Q16/Q16C3 ⊆ Aut C321446C3^2:6(C3xQ16)432,222
C327(C3×Q16) = C32×Dic12φ: C3×Q16/C24C2 ⊆ Aut C32144C3^2:7(C3xQ16)432,468
C328(C3×Q16) = C3×C325Q16φ: C3×Q16/C24C2 ⊆ Aut C32144C3^2:8(C3xQ16)432,484
C329(C3×Q16) = C32×C3⋊Q16φ: C3×Q16/C3×Q8C2 ⊆ Aut C32144C3^2:9(C3xQ16)432,478
C3210(C3×Q16) = C3×C327Q16φ: C3×Q16/C3×Q8C2 ⊆ Aut C32144C3^2:10(C3xQ16)432,494

Non-split extensions G=N.Q with N=C32 and Q=C3×Q16
extensionφ:Q→Aut NdρLabelID
C32.(C3×Q16) = Q16×3- 1+2φ: C3×Q16/Q16C3 ⊆ Aut C321446C3^2.(C3xQ16)432,223
C32.2(C3×Q16) = C9×Dic12φ: C3×Q16/C24C2 ⊆ Aut C321442C3^2.2(C3xQ16)432,113
C32.3(C3×Q16) = C9×C3⋊Q16φ: C3×Q16/C3×Q8C2 ⊆ Aut C321444C3^2.3(C3xQ16)432,159
C32.4(C3×Q16) = Q16×C3×C9central extension (φ=1)432C3^2.4(C3xQ16)432,221

׿
×
𝔽